Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex.
نویسندگان
چکیده
The cannabinoid CB1 receptor system is critically involved in the control of associative fear memory formation within the amygdala-prefrontal cortical pathway. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the prelimbic division (PLC) of the medial prefrontal cortex (mPFC). However, the precise role of CB1 receptor transmission within the BLA during the processing of fear memory is not fully understood. We examined the potential role of BLA CB1 receptor transmission during an olfactory fear-conditioning procedure in rats by pharmacologically modulating CB1 cannabinoid transmission directly within the BLA. We report that blockade of BLA CB1 receptor transmission prevents the acquisition of associative fear memory, while having no effect on the recall or consolidation of these memories. In contrast, intra-BLA activation of CB1 receptor transmission or blockade of endocannabinoid reuptake strongly potentiated the emotional salience of normally subthreshold fear-conditioning stimuli. In addition, pharmacological inactivation of the mPFC before intra-BLA CB1 activation blocked CB1-receptor-mediated potentiation of fear memory formation. In vivo single-unit electrophysiological recordings within the PLC revealed that modulation of BLA CB1 receptor transmission strongly influences neuronal activity within subpopulations of PLC neurons, with blockade of intra-BLA CB1 receptor transmission inhibiting spontaneous PLC neuronal activity and activation of CB1 receptors producing robust activation, in terms of neuronal firing frequency and bursting activity. Thus, cannabinoid transmission within the BLA strongly modulates the processing of associative fear memory via functional interactions with PLC neuronal populations.
منابع مشابه
Cannabinoids Potentiate Emotional Learning Plasticity in Neurons of the Medial Prefrontal Cortex through Basolateral Amygdala Inputs.
Cannabinoids represent one of the most commonly used hallucinogenic drug classes. In addition, cannabis use is a primary risk factor for schizophrenia in susceptible individuals and can potently modulate the emotional salience of sensory stimuli. We report that systemic activation or blockade of cannabinoid CB1 receptors modulates emotional associative learning and memory formation in a subpopu...
متن کاملIntegrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding.
The cannabinoid CB1 receptor system is functionally involved in the processing and encoding of emotionally salient sensory information, learning and memory. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC). In addition, synaptic plasticity in the form ...
متن کاملRole of Amygdala-Infralimbic Cortex Circuitry in Glucocorticoid-induced Facilitation of Auditory Fear Memory Extinction
Introduction: The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. Howev...
متن کاملCB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice.
Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and the phosphatase calcineurin as potential molecula...
متن کاملNMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates.
The medial prefrontal cortex (mPFC) plays a significant role in associative learning and memory formation during the opiate addiction process. Various lines of evidence demonstrate that glutamatergic (GLUT) transmission through the N-methyl D-aspartate (NMDA) receptor can modulate neuronal network activity within the mPFC and influence dopaminergic signaling within the mesocorticolimbic pathway...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 14 شماره
صفحات -
تاریخ انتشار 2011